1
|
Cheemanapalli S, Golla R, Pagidi S, Pantangi S. In silico exploration of phytocompounds from AYUSH-64 medicinal plants against SARS CoV-2 RNA-dependent RNA polymerase. J Ayurveda Integr Med 2024; 15:101026. [PMID: 39488119 PMCID: PMC11565463 DOI: 10.1016/j.jaim.2024.101026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND The AYUSH 64 formulation helps to treat mild to moderate cases of COVID-19. Although several drugs have been proposed to combat COVID-19, no medication is available for SARS-CoV-2 infection. The RNA-dependent RNA polymerase (RdRp) is the pivotal enzyme of SARS-CoV-2 replication, so it could be considered a better drug target for experimental studies. OBJECTIVE The AYUSH-64 formulation plants exhibited multiple therapeutic properties; thus, the present study aims to screen the phytocompounds of these plants against SARS CoV2 RdRp to identify specific compounds that could potentially affect COVID-19 infection. MATERIALS AND METHODS PatchDock and AutoDock tools were used for docking experiments. MD simulations and Density Functional Theory (DFT) calculations of protein-ligand Picroside-I and Remdesivir complexes were carried out in GROMACS v2019.4 and Gaussian 09 software, respectively. RESULTS Among the tested, five phytocompounds (Picroside I, Oleanolic acid, Arvenin I, II, and III) from AYUSH-64 medicinal plants showed possible binding with RdRp catalytic residues (Ser759, Asp760, and Asp761). Of these, Picroside I exhibited hydrogen bond interactions with NTP entry channel residues (Arg553 and Arg555). The MM-PBSA free energy, RMSD, Rg, PCA, and RMSF analysis suggested that the Picroside I complex showed stable binding interactions with RdRp in the 50 ns simulation. In addition to this, Picroside I revealed its robust and attractive nature toward the target protein, as confirmed by DFT. CONCLUSION The results of this study have proposed that Picroside I from AYUSH 64 medicinal plant compounds was the selective binder of catalytic and NTP entry channel residues of SARS-CoV2 RdRp thereby; it may considered as a potential inhibitor of SARS-CoV2 RdRp.
Collapse
Affiliation(s)
- Srinivasulu Cheemanapalli
- Survey of Medicinal Plants Unit, CCRAS - Regional Ayurveda Research Institute, Itanagar, Arunachal Pradesh, India
| | - Ramanjaneyulu Golla
- Department of Biochemistry, School of Allied Health Science, REVA University, Bangalore, India.
| | - Sudhakar Pagidi
- Department of Chemical Sciences, Indian Institute of Science, Bangalore, India
| | - Seshapani Pantangi
- Department of Microbiology, Sri Venkateswara University, Tirupati, India
| |
Collapse
|
2
|
Huang J, Ma Q, Su Z, Cheng X. Advancements in the Development of Anti-SARS-CoV-2 Therapeutics. Int J Mol Sci 2024; 25:10820. [PMID: 39409149 PMCID: PMC11477007 DOI: 10.3390/ijms251910820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19, and so far, it has occurred five noteworthy variants of concern (VOC). SARS-CoV-2 invades cells by contacting its Spike (S) protein to its receptor on the host cell, angiotensin-converting enzyme 2 (ACE2). However, the high frequency of mutations in the S protein has limited the effectiveness of existing drugs against SARS-CoV-2 variants, particularly the Omicron variant. Therefore, it is critical to develop drugs that have highly effective antiviral activity against both SARS-CoV-2 and its variants in the future. This review provides an overview of the mechanism of SARS-CoV-2 infection and the current progress on anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Junjie Huang
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| | - Qianqian Ma
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China;
| |
Collapse
|
3
|
Rai P, Garain T, Gupta D. Phytochemical analysis of Tinospora cordifolia and Withania somnifera and their therapeutic activities with special reference to COVID-19. World J Exp Med 2024; 14:95512. [PMID: 39312696 PMCID: PMC11372741 DOI: 10.5493/wjem.v14.i3.95512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Various important medicines make use of secondary metabolites that are produced by plants. Medicinal plants, such as Withania somnifera and Tinospora cordifolia, are rich sources of chemically active compounds and are reported to have numerous therapeutic applications. The therapeutic use of medicinal plants is widely mentioned in Ayurveda and has folkloric importance in different parts of the world. The aim of this review is to summarize the phytochemical profiles, folkloric importance, and primary pharmacological activity of W. somnifera and T. cordifolia with emphasis on their action against the novel coronavirus.
Collapse
Affiliation(s)
- Prateek Rai
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Tanya Garain
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Deepshikha Gupta
- Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| |
Collapse
|
4
|
Riadi Y, Afzal O, Kumar S, Varadharajan V, Geesi MH. Synthesis of novel ( R)-carvone-tagged thiazolidinone as anticancer leads: characterization, in vitro antiproliferative evaluation and in silico studies. J Biomol Struct Dyn 2024:1-14. [PMID: 38523573 DOI: 10.1080/07391102.2024.2331095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
This work describes the successful synthesis of a series of three novel thiazolidinone-carvone-O-alkyl hybrids through a two-step approach involving heterocyclization and O-alkylation reactions. Comprehensive structural characterization of the obtained products was achieved using NMR and HRMS spectroscopic techniques. This study assessed in vitro antiproliferative activity of synthesized thiazolidinone-carvone-O-alkyl hybrids (5a-c) against various human cancer cell lines, viz. HT-1080 (fibrosarcoma), A-549 (lung cancer), MCF-7 (breast cancer) and MDA-MB-231 (breast cancer). MTT assay revealed promising results for compounds 5b and 5c, demonstrating good antiproliferative activity against A-549 and MCF-7 cell lines comparable to the positive control, Doxorubicin. Compound 5a, harbouring an O-acetoxy group, displayed limited anticancer activity against MCF-7 and MDA-MB-231 cells, with IC50 values of 69.33 ± 0.42 µM and >100 µM, respectively. Docking results confirmed that the compounds 5a-c binds at the active site of p21 with docking scores -2.0, -4.8, and -7.0 kcal/mol, respectively. Compound 5a-c also showed good binding potential against Bcl2 protein with docking score of -4.9, -6.0, -5.5 kcal/mol, respectively. Furthermore, binding energy analysis and dynamics simulation studies of compounds towards p21 and Bcl2 yielded promising results. In PAK4 assay, compound 5c showed comparable potency (IC50 6.76 µM) with the standard control UC2288 (IC50 6.40 µM), while in BCL-2 TR-FRET assay, 5c exhibited good inhibition (IC50 1.78 µM) as compared to Venetoclax (IC50 0.016 µM). In conclusion, compounds 5a-c could be used as a structural framework for the discovery of novel therapeutics to combat different types of cancer.
Collapse
Affiliation(s)
- Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, India
| | | | - Mohammed H Geesi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
5
|
Singh AK, Prajapati KS, Kumar S. Discovery of anticancer compound possessing potential to bind γ-secretase catalytic subunit and inhibit notch promoter activity. J Biomol Struct Dyn 2024:1-16. [PMID: 38345058 DOI: 10.1080/07391102.2024.2315323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 01/16/2025]
Abstract
Gamma secretase (GS) is an important therapeutic target in anticancer drug discovery. Increased GS activity activates notch signaling pathway which is associated with cancer stemness and drug resistance in cancer cells. A total of 69,075 natural and their derivative compounds were screened to identify the lead compound on the basis of in silico GS catalytic domain binding potential and in vitro selective anticancer efficacy. STOCK1N-23234 showed higher dock score (-11.82) compared to DAPT (-9.2) in molecular docking experiment and formed hydrogen bond with the key amino acid (Asp385) involve in catalysis process. Molecular dynamics (MD) simulation parameters (RMSD, RMSF, Rg, SASA and hydrogen bond formation) revealed that the STOTCK1N-23234 formed structurally and energetically stable complex with the GS catalytic domain with lower binding energy (-22.79 kcal/mol) compared to DAPT (-16.22 kcal/mol). STOCK1N-23234 showed better toxicity (up to 60%) against colon and breast cancer cells (HCT-116 and MDA-MB-453) at 1-70 µM concentration. Interestingly, STOCK1N-23234 did not showed cytotoxicity against human normal breast cells (MCF-10A). STOCK1N-23234 treatment significantly decreased sphere formation, notch promoter activity, and transcription of notch target genes (Hes-1 and Hey-1) in HCT-116 cells derived colonosphere. Confocal microscopy revealed that STOTCK1N-23234 treatment at test concentration induced apoptosis related morphological changes, reduced mitochondria membrane potential and increased reactive oxygen species production in HCT-116 cells compared to non-treated cells. In conclusion, STOCK1N-23234 is a novel lead natural anticancer compound which requires in depth validation in cancer preclinical models.
Collapse
Affiliation(s)
| | | | - Shashank Kumar
- Department of Biochemistry, Molecular Signaling & Drug Discovery Laboratory, Central University of Punjab, Guddha, Bathinda, India
| |
Collapse
|
6
|
Jadaun P, Harshithkumar R, Gaikwad SY, Seniya C, Borse S, Gawai AA, Chavan-Gautam P, Tillu G, Mukherjee A. Withania somnifera extracts induced attenuation of HIV-1: a mechanistic approach to restrict viral infection. Virol J 2023; 20:173. [PMID: 37537596 PMCID: PMC10401819 DOI: 10.1186/s12985-023-02130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Several anti-retroviral drugs are available against Human immunodeficiency virus type-1, but have multiple adverse side effects. Hence, there is an incessant compulsion for effectual anti-retroviral agents with minimal or no intricacy. Traditionally, natural products have been the most successful source for the development of new medications. Withania somnifera, also known as Ashwagandha, is the utmost treasured medicinal plant used in Ayurveda, which holds the potential to give adaptogenic, immunomodulatory, and antiviral effects. However, its effect on HIV-1 replication at the cellular level has never been explored. Herein, we focused on the anti-HIV-1 activity and the probable mechanism of action of hydroalcoholic and aqueous extracts of Withania somnifera roots and its phytomolecules. METHODS The cytotoxicity of the extracts was determined through MTT assay, while the in vitro anti-HIV-1 activity was assessed in TZM-bl cells against the HIV-1 strains of X4 and R5 subtypes. Results were confirmed in peripheral blood mononuclear cells, using the HIV-1 p24 antigen assay. Additionally, the mechanism of action was determined through the Time of Addition assay, which was further validated through the series of enzymatic assays, i.e. HIV-1 Integrase, Reverse transcriptase, and Protease assays. To explore the role of the identified active metabolites of Withania somnifera in antiretroviral activity, molecular docking analyses were performed against these key HIV-1 replication enzymes. RESULTS The hydroalcoholic and aqueous extracts of Withania somnifera roots were found to be safer at the sub-cytotoxic concentrations and exhibited their ability to inhibit replication of two primary isolates of HIV-1 through cell-associated and cell-free assays, in dose-dependent kinetics. Several active phytomolecules found in Withania somnifera successfully established hydrogens bonds in the active binding pocket site residues responsible for the catalytic activity of HIV replication and therefore, signifying their role in the attenuation of HIV-1 infection as implied through the in silico molecular docking studies. CONCLUSIONS Our research identified both the hydroalcoholic and aqueous extracts of Withania somnifera roots as potent inhibitors of HIV-1 infection. The in silico analyses also indicated the key components of Withania somnifera with the highest binding affinity against the HIV-1 Integrase by 12-Deoxywithastramonolide and 27-Hydroxywithanone, HIV-1 Protease by Ashwagandhanolide and Withacoagin, and HIV-1 Reverse transcriptase by Ashwagandhanolide and Withanolide B, thereby showing possible mechanisms of HIV-1 extenuation. Overall, this study classified the role of Withania somnifera extracts and their active compounds as potential agents against HIV-1 infection.
Collapse
Affiliation(s)
| | - R Harshithkumar
- ICMR-National AIDS Research Institute, Pune, 411026, MH, India
| | | | - Chandrabhan Seniya
- School of Biosciences, Engineering and Technology, VIT Bhopal University, Bhopal, 466114, MP, India
| | - Swapnil Borse
- CCIH-Interdisciplinary School of Health Sciences, AYUSH-Center of Excellence, Savitribai Phule Pune University, Pune, 411007, MH, India
| | - Ashish A Gawai
- Anuradha College of Pharmacy, Buldana, 443201, MH, India
| | - Preeti Chavan-Gautam
- CCIH-Interdisciplinary School of Health Sciences, AYUSH-Center of Excellence, Savitribai Phule Pune University, Pune, 411007, MH, India
| | - Girish Tillu
- CCIH-Interdisciplinary School of Health Sciences, AYUSH-Center of Excellence, Savitribai Phule Pune University, Pune, 411007, MH, India
| | | |
Collapse
|
7
|
Singh M, Jayant K, Singh D, Bhutani S, Poddar NK, Chaudhary AA, Khan SUD, Adnan M, Siddiqui AJ, Hassan MI, Khan FI, Lai D, Khan S. Withania somnifera (L.) Dunal (Ashwagandha) for the possible therapeutics and clinical management of SARS-CoV-2 infection: Plant-based drug discovery and targeted therapy. Front Cell Infect Microbiol 2022; 12:933824. [PMID: 36046742 PMCID: PMC9421373 DOI: 10.3389/fcimb.2022.933824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic has killed huge populations throughout the world and acts as a high-risk factor for elderly and young immune-suppressed patients. There is a critical need to build up secure, reliable, and efficient drugs against to the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Bioactive compounds of Ashwagandha [Withania somnifera (L.) Dunal] may implicate as herbal medicine for the management and treatment of patients infected by SARS-CoV-2 infection. The aim of the current work is to update the knowledge of SARS-CoV-2 infection and information about the implication of various compounds of medicinal plant Withania somnifera with minimum side effects on the patients' organs. The herbal medicine Withania somnifera has an excellent antiviral activity that could be implicated in the management and treatment of flu and flu-like diseases connected with SARS-CoV-2. The analysis was performed by systematically re-evaluating the published articles related to the infection of SARS-CoV-2 and the herbal medicine Withania somnifera. In the current review, we have provided the important information and data of various bioactive compounds of Withania somnifera such as Withanoside V, Withanone, Somniferine, and some other compounds, which can possibly help in the management and treatment of SARS-CoV-2 infection. Withania somnifera has proved its potential for maintaining immune homeostasis of the body, inflammation regulation, pro-inflammatory cytokines suppression, protection of multiple organs, anti-viral, anti-stress, and anti-hypertensive properties. Withanoside V has the potential to inhibit the main proteases (Mpro) of SARS-CoV-2. At present, synthetic adjuvant vaccines are used against COVID-19. Available information showed the antiviral activity in Withanoside V of Withania somnifera, which may explore as herbal medicine against to SARS-CoV-2 infection after standardization of parameters of drug development and formulation in near future.
Collapse
Affiliation(s)
- Manali Singh
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Kuldeep Jayant
- Department of Agricultural and Food Engineering, IIT Kharagpur, West Bengal, Kharagpur, India
| | - Dipti Singh
- Department of Biochemistry, C.B.S.H, G.B Pant University of Agriculture and Technology, Pantnagar, Uttrakhand, India
| | - Shivani Bhutani
- Department of Biotechnology, Invertis University, Bareilly, Uttar Pradesh, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Faez Iqbal Khan
- Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, China
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shahanavaj Khan
- Department of Health Sciences, Novel Global Community Educational Foundation 7 Peterlee Place, Hebersham, NSW, Australia
- Department of Medical Lab Technology, Indian Institute of Health and Technology (IIHT), Deoband, Saharanpur, UP, India
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|