1
|
Zuo X, Bai HJ, Zhao QL, Zhang SH, Zhao X, Feng XZ. 17β-Trenbolone Exposure Enhances Muscle Activity and Exacerbates Parkinson's Disease Progression in Male Mice. Mol Neurobiol 2025; 62:3053-3066. [PMID: 39222261 DOI: 10.1007/s12035-024-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder, and while the neuroprotective effects of estrogen are well-documented, the impact of androgens on neurological disorders remains understudied. The consequences of exposure to 17-trenbolone (17-TB), an environmental endocrine disruptor with androgen-like properties, on the mammalian nervous system have received limited attention. Therefore, in this study, we aimed to investigate the biological effects of 17-TB exposure on PD. In our investigation using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we discovered that 17-TB exposure elevated testosterone hormone levels prevented androgen receptor (AR) reduction, upregulated the expression of muscular dystrophic factors (Atrogin1, MuRF1, Musa1, and Myostatin), improved muscle strength, and enhanced locomotor activity in the open field test. However, it is noteworthy that exposure to 17-TB also led to an upregulation of neuroinflammatory cytokines (NLRP3, IL-6, IL-1α, and IL-1β) in PD mice. Crucially, 17-TB exposure induced downregulation of nigral apoptotic proteins DJ-1 and Bcl-2 while upregulating Bax and Caspase-3 in PD mice. This exacerbated neuronal apoptosis, ultimately intensifying dopaminergic neuronal degeneration and death in the substantia nigra and striatum of PD mice. In conclusion, our findings indicate that while 17-TB mitigates muscle atrophy and enhances motor activity in PD mice, it concurrently exacerbates neuroinflammation, induces neuronal apoptosis, and worsens dopaminergic neuronal death, thereby aggravating the progression of MPTP-induced Parkinsonism. This underscores the importance of considering potential environmental risks in neurodegeneration associated with Parkinson's disease, providing a cautionary tale for our daily exposure to environmental endocrine chemical disruptors.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Hui-Juan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qi-Li Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Shu-Hui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Zhang S, Mi P, Luan J, Sun M, Zhao X, Feng X. Fluorene-9-bisphenol acts on the gut-brain axis by regulating oxytocin signaling to disturb social behaviors in zebrafish. ENVIRONMENTAL RESEARCH 2024; 255:119169. [PMID: 38763277 DOI: 10.1016/j.envres.2024.119169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Previous studies have identified the exposure to ubiquitous environmental endocrine disruptors may be a risk factor of neurological disorders. However, the effects of fluorene-9-bisphenol (BHPF) in environmental exposure concentrations associated with these disorders are poorly understood. In this study, classic light-dark and social behavior tests were performed on zebrafish larvae and adults exposed BHPF exposure to evaluate social behavioral disorders and the microbiota-gut-brain axis was assessed to reveal the potential mechanisms underlying the behavioral abnormalities observed. Our results demonstrated that zebrafish larvae exposed to an environmentally relevant concentration (0.1 nM) of BHPF for 7 days showed a diminished response to external environmental factors (light or dark). Zebrafish larvae exposed to BHPF for 7 days or adults exposed to BHPF for 30 days at 1 μM displayed significant behavioral inhibition and altered social behaviors, including social recognition, social preference, and social fear contagion, indicating autism-like behaviors were induced by the exposure. BHPF exposure reduced the distribution of Nissl bodies in midbrain neurons and significantly reduced 5-hydroxytryptamine signaling. Oxytocin (OXT) levels and expression of its receptor oxtra in the gut and brain were down-regulated by BHPF exposure. In addition, the expression levels of genes related to the excitation-inhibitory balance of synaptic transmission changed. Microbiomics revealed increased community diversity and altered abundance of some microflora, such as an elevation in Bacillota and Bacteroidota and a decline in Mycoplasmatota in zebrafish guts, which might contribute to the abnormal neural circuits and autism-like behaviors induced by BHPF. Finally, the rescue effect of exogenous OXT on social behavioral defects induced by BHPF exposure was verified in zebrafish, highlighting the crucial role of OXT signaling through gut-brain axis in the regulatory mechanisms of social behaviors affected by BHPF. This study contributes to understanding the effects of environmental BHPF exposure on neuropsychiatric disorders and attracts public attention to the health risks posed by chemicals in aquatic organisms. The potential mental disorders should be considered in the safety assessments of environmental pollutants.
Collapse
Affiliation(s)
- Shuhui Zhang
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Ping Mi
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Jialu Luan
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- The Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China.
| | - Xizeng Feng
- College of Life Science, State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education. Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Zuo X, Zhang S, Bai H, Yu Q, Zhao Q, Sun M, Zhao X, Feng X. Effects of fluorene-9-bisphenol exposure on anxiety-like and social behavior in mice and protective potential of exogenous melatonin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29385-29399. [PMID: 38573577 DOI: 10.1007/s11356-024-33148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Fluorene-9-bisphenol (BHPF) is widely used in the manufacture of plastic products and potentially disrupts several physiological processes, but its biological effects on social behavior remain unknown. In this study, we investigated the effects of BHPF exposure on anxiety-like and social behavior in female mice and the potential mechanisms, thereby proposing a potential therapy strategy. We exposed female Balb/c mice to BHPF by oral gavage at different doses (0.5, 50 mg/kg bw/2-day) for 28 days, which were found BHPF (50 mg/kg) exposure affected motor activity in the open field test (OFT) and elevated cross maze (EPM), resulting in anxiety-like behaviors, as well as abnormal social behavioral deficits in the Social Interaction Test (SIT). Analysis of histopathological staining results showed that BHPF exposure caused damage to hippocampal neurons in the CA1/CA3/DG region and decreased Nissl pyramidal neurons in the CA1/CA3 regions of the hippocampus, as well as a decrease in parvalbumin neuron expression. In addition, BHPF exposure upregulated the expression of excitatory and inhibitory (E/I) vesicle transporter genes (Vglut1, Vglut2, VGAT, GAD67, Gabra) and axon growth gene (Dcc) in the mouse hippocampus. Interestingly, behavioral disturbances and E/I balance could be alleviated by exogenous melatonin (15 mg/kg bw/2-day) therapy. Our findings suggest that exogenous melatonin may be a potential therapy with protective potential for ameliorating or preventing BHPF-induced hippocampal neuronal damage and behavioral disturbances. This study provided new insight into the neurotoxicological effects on organisms exposed to endocrine-disrupting chemicals and aroused our vigilance in current environmental safety about chemical use.
Collapse
Affiliation(s)
- Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Shuhui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Huijuan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Qian Yu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Qili Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Mingzhu Sun
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xin Zhao
- Institute of Robotics & Automatic Information System, College of Artificial Intelligence, Nankai University, Tianjin, 300071, China
| | - Xizeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Weijin Road 94, Tianjin, 300071, China.
| |
Collapse
|